Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Article in English | MEDLINE | ID: mdl-38734371

ABSTRACT

BACKGROUND: Poppy seed (PS) can be a cause of severe allergic reactions, especially in individuals with concurrent allergy to tree nuts and other seeds, but diagnostic criteria and sensitization patterns are lacking. OBJECTIVE: To assess the role of PS extract and individual allergens in diagnosing PS allergy and their cross-reactivities with tree nuts and buckwheat. METHODS: Our retrospective study included 36 PS-sensitized patients; 10 with positive and 26 with a negative oral food challenge (OFC). We identified individual PS allergens and compared the diagnostic performance of sIgE to PS extract to its allergens. Cross-reactivities between PS and related allergens from other seeds was assessed by competitive ELISA. RESULTS: We identified four novel PS allergens: Pap s 1 (vicilin), Pap s 1 (27-424) (α-hairpinin), Pap s 2 (legumin), and Pap s 3 (small hydrophilic seed protein). Positive OFC correlated with higher PS-sIgE levels and elevated sIgE levels for the PS allergens, except for Pap s 3. PS and α-hairpinin-sIgE effectively differentiated allergic from tolerant patients, with AUC values of 0.95 and 0.94. PS-sIgE >10.00 kUA/L exhibited 90% sensitivity and 73% specificity, while α-hairpinin -sIgE >2.60 kUA/L showed 100% sensitivity and 77% specificity. PS vicilin and legumin highly cross-reacted with hazelnut and buckwheat homologues, while α-hairpinin-sIgE cross-reacted with the related almond allergen. CONCLUSIONS: This is the most extensive study on poppy seed allergy to date. Poppy seed and α-hairpinin-sIgE are highly sensitive indicators of clinical reactivity to poppy seeds, while vicilin and legumin-sIgE contribute to concurrent sensitization to hazelnut and buckwheat.

2.
Allergy ; 79(4): 777-792, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041429

ABSTRACT

Efficacious, effective and efficient communication between healthcare professionals (HCP) and patients is essential to achieve a successful therapeutic alliance. Telemedicine (TM) has been used for decades but during the COVID-19 pandemic its use has become widespread. This position paper aims to describe the terminology and most important forms of TM among HCP and patients and review the existing studies on the uses of TM for asthma and allergy. Besides, the advantages and risks of TM are discussed, concluding that TM application reduces costs and time for both, HCP and patients, but cannot completely replace face-to-face visits for physical examinations and certain tests that are critical in asthma and allergy. From an ethical point of view, it is important to identify those involved in the TM process, ensure confidentiality and use communication channels that fully guarantee the security of the information. Unmet needs and directions for the future regarding implementation, data protection, privacy regulations, methodology and efficacy are described.


Subject(s)
Asthma , Hypersensitivity , Telemedicine , Humans , Pandemics , Telemedicine/methods , Confidentiality , Hypersensitivity/diagnosis , Hypersensitivity/epidemiology , Hypersensitivity/therapy , Asthma/diagnosis , Asthma/epidemiology , Asthma/therapy
3.
Allergy ; 78(12): 3057-3076, 2023 12.
Article in English | MEDLINE | ID: mdl-37815205

ABSTRACT

This European Academy of Allergy and Clinical Immunology guideline provides recommendations for diagnosing IgE-mediated food allergy and was developed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. Food allergy diagnosis starts with an allergy-focused clinical history followed by tests to determine IgE sensitization, such as serum allergen-specific IgE (sIgE) and skin prick test (SPT), and the basophil activation test (BAT), if available. Evidence for IgE sensitization should be sought for any suspected foods. The diagnosis of allergy to some foods, such as peanut and cashew nut, is well supported by SPT and serum sIgE, whereas there are less data and the performance of these tests is poorer for other foods, such as wheat and soya. The measurement of sIgE to allergen components such as Ara h 2 from peanut, Cor a 14 from hazelnut and Ana o 3 from cashew can be useful to further support the diagnosis, especially in pollen-sensitized individuals. BAT to peanut and sesame can be used additionally. The reference standard for food allergy diagnosis is the oral food challenge (OFC). OFC should be performed in equivocal cases. For practical reasons, open challenges are suitable in most cases. Reassessment of food allergic children with allergy tests and/or OFCs periodically over time will enable reintroduction of food into the diet in the case of spontaneous acquisition of oral tolerance.


Subject(s)
Food Hypersensitivity , Child , Humans , Food Hypersensitivity/diagnosis , Skin Tests , Immunoglobulin E , Allergens , Pollen
4.
Front Allergy ; 4: 1260902, 2023.
Article in English | MEDLINE | ID: mdl-37608929

ABSTRACT

Allergic diseases represent a relevant global health problem, affecting adults and children and posing a significant burden for health care systems. In addition, the disease is still under-recognized and harmonized diagnostic tools and management plans for patients are still lacking. In this review the most important aspects of the diagnosis of allergic diseases are summarized and the contribution of Molecular allergology to this area is highlighted.

5.
Heliyon ; 9(8): e18247, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37533998

ABSTRACT

The receptor for advanced glycation end products (RAGE) is encoded by AGER, a gene that is subjected to tissue-specific alternative splicing. Splice variants of RAGE in intestine and placenta are unknown and contradictory data concerning RAGE protein expression in these tissues have been published. As a basis for future functional studies, we examined RAGE expression in small intestine, colon and placentas. PCR cloning revealed that full-length RAGE is the only RAGE transcript isoform expressed in placenta. In the small intestine, the major transcript isoform detected was RAGE_v1 encoding the C-terminally truncated soluble receptor. In the colon, both full-length RAGE as well as several splice variants were identified. Four antibodies were used to study protein expression by immunoblotting and were carefully validated. Appropriate controls were essential to avoid misinterpretation of bands caused by non-specific reactivity of antibodies. Only one of four antibodies tested detected full-length RAGE in placenta, whereas no RAGE-specific band was detected in intestinal tissues despite loading >30-fold more intestinal tissue than the positive control, human lung. RAGE expression levels in the placenta were 100-fold lower compared with human lung when analyzed by ELISA, and no significant differences in RAGE expression were detected between healthy placentas and placentas from women with preeclampsia, gestational diabetes mellitus, or fetal growth restriction. We conclude that healthy placental chorionic tissue expresses low levels of full-length RAGE, whereas expression of the tissue-specific intestinal isoforms is below the limit of detection. Low RAGE expression levels in combination with a lack of antibody validation may explain the conflicting published results on RAGE protein expression in intestine and placenta.

6.
Immunology ; 170(1): 1-12, 2023 09.
Article in English | MEDLINE | ID: mdl-37067238

ABSTRACT

Effective delivery of luminal antigens to the underlying immune system is the initial step in generating antigen-specific responses in the gut. However, a large body of information regarding the immune response activation process remains unknown. Recently, goblet cells (GCs) have been reported to form goblet cell-associated antigen passages (GAPs). Luminal antigens can be transported inside GAPs and reach subepithelial immune cells to induce antigen-specific immune responses, contributing largely to gut homeostasis and the prevention of some intestinal diseases like allergic enteritis and bacterial translocation. In this article, we summarized recent observations on the formation of intestinal GAPs and their roles in mucosal immunity. We hope that this review can offer a fresh perspective and valuable insights for clinicians and researchers interested in studying the intestinal immune system.


Subject(s)
Colitis , Goblet Cells , Humans , Immune System , Immunity, Mucosal , Biological Transport
7.
Front Mol Biosci ; 10: 1126008, 2023.
Article in English | MEDLINE | ID: mdl-36845549

ABSTRACT

Background: Peanut-allergic individuals react upon their first known ingestion of peanuts, suggesting sensitization occurs through non-oral exposure. Increasing evidence suggests that the respiratory tract is a probable site for sensitization to environmental peanuts. However, the response of the bronchial epithelium to peanut allergens has never been explored. Furthermore, food matrix-derived lipids play an important role in allergic sensitization. Objective: To contribute to a better understanding of the mechanisms of allergic sensitization to peanuts via inhalation, by exploring the direct effect of the major peanut allergens Ara h 1 and Ara h 2 and peanut lipids on bronchial epithelial cells. Methods: Polarized monolayers of the bronchial epithelial cell line 16HBE14o- were stimulated apically with peanut allergens and/or peanut lipids (PNL). Barrier integrity, transport of allergens across the monolayers, and release of mediators were monitored. Results: Ara h 1 and Ara h 2 impacted the barrier integrity of the 16HBE14o- bronchial epithelial cells and crossed the epithelial barrier. Ara h 1 also induced the release of pro-inflammatory mediators. PNL improved the barrier function of the cell monolayers, decreased paracellular permeability and reduced the amount of allergens crossing the epithelial layer. Conclusion: Our study provides evidence of the transport of Ara h 1 and Ara h 2 across the airway epithelium, of the induction of a pro-inflammatory milieu, and identifies an important role for PNL in controlling the amount of allergens that can cross the epithelial barrier. These, all together, contribute to a better understanding of the effects of peanuts exposure on the respiratory tract.

9.
World Allergy Organ J ; 15(11): 100708, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36440466

ABSTRACT

Vegetables provide important nutrients but can also induce allergic symptoms. Celery tuber allergy frequently occurs in Central European countries and can cause allergic reactions including fatal anaphylactic shocks. There is little information about allergen content in seeds. Therefore, we analyzed 2 patients with allergic reaction after remoulade sauce consumption who entered the clinic for a diagnostic work-up. The routine diagnostic included serum derived specific IgE testing by ImmunoCAP, ImmunoCAP ISAC, and skin prick tests (SPTs). Furthermore, protein extracts were prepared from both celery tuber and celery seeds and IgE binding capacity of these extracts was assessed by immunoblots, ELISA, and rat basophil leukemia (RBL) assay. We also determined role of cross-reactive carbohydrate determinants (CCDs) by IgE inhibition ELISA. Results revealed distinct protein patterns from celery tuber and seed extracts, suggesting differences in content and quantity of allergenic proteins. IgE antibodies from both sera bound to high molecular weight (HMW) proteins on immunoblots and caused high basophil response, which was also observed upon addition of glycosylated proteins as horseradish peroxidase and Api g 5, respectively. Our results indicate that it is worth considering CCDs from plant foods as a possible allergenic factor and their contribution to the mugwort-celery syndrome.

10.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141044

ABSTRACT

Most of the food allergens sensitized via the gastrointestinal tract resist thermal treatments and digestion, particularly digestion by pepsin. Roasted hazelnuts are more commonly consumed than raw ones. Since no studies have characterized gastric digestion protein fragments of raw and roasted hazelnuts nor their IgE binding properties, we compared these aspects of raw and roasted hazelnuts' gastric digesta obtained by INFOGEST protocol. Their electrophoretically resolved profiles were probed with hazelnut allergic patients' sera in 1D and 2D immunoblots. Electrophoretic profiles demonstrated pepsin digestion of all hazelnut allergens to varying extents. While 2D immunoblots indicated that roasting slightly reduced allergenicity, IgE ELISA with the pool of sera showed a slight significant (10%) increase in IgE binding in both gastric digesta. Cor a 9 isolated from the raw and roasted hazelnuts, characterized by far and near CD, remained stable after roasting, with preserved IgE reactivity. Its immunoreactivity contribution by inhibitory ELISA was noticeable in raw and roasted hazelnut digesta; its activity was slightly stronger in the roasted preparations. Roasting has a visible impact on proteins; however, it did not affect overall IgE reactivity. Gastric digestion slightly increases the overall IgE reactivity in raw and roasted hazelnuts, and may therefore impact the profiles of allergens and their fragments available to interact with the immune system in the small intestine.

11.
Allergy ; 77(11): 3185-3198, 2022 11.
Article in English | MEDLINE | ID: mdl-35801383

ABSTRACT

Microbial metabolism of specific dietary components, such as fiber, contributes to the sophisticated inter-kingdom dialogue in the gut that maintains a stable environment with important beneficial physiological, metabolic, and immunological effects on the host. Historical changes in fiber intake may be contributing to the increase of allergic and hypersensitivity disorders as fiber-derived metabolites are evolutionarily hardwired into the molecular circuitry governing immune cell decision-making processes. In this review, we highlight the importance of fiber as a dietary ingredient, its effects on the microbiome, its effects on immune regulation, the importance of appropriate timing of intervention to target any potential window of opportunity, and potential mechanisms for dietary fibers in the prevention and management of allergic diseases. In addition, we review the human studies examining fiber or prebiotic interventions on asthma and respiratory outcomes, allergic rhinitis, atopic dermatitis, and overall risk of atopic disorders. While exposures, interventions, and outcomes were too heterogeneous for meta-analysis, there is significant potential for using fiber in targeted manipulations of the gut microbiome and its metabolic functions in promoting immune health.


Subject(s)
Dermatitis, Atopic , Gastrointestinal Microbiome , Rhinitis, Allergic , Humans , Dietary Fiber , Prebiotics , Dermatitis, Atopic/prevention & control
12.
Clin Rev Allergy Immunol ; 62(1): 37-63, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32876924

ABSTRACT

This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.


Subject(s)
Allergens , Food Hypersensitivity , Allergens/chemistry , Animals , Food Hypersensitivity/etiology , Humans , Mice , Plant Proteins , Pollen
13.
Allergy ; 77(6): 1736-1750, 2022 06.
Article in English | MEDLINE | ID: mdl-34741557

ABSTRACT

BACKGROUND: Food anaphylaxis is commonly elicited by unintentional ingestion of foods containing the allergen above the tolerance threshold level of the individual. While labeling the 14 main allergens used as ingredients in food products is mandatory in the EU, there is no legal definition of declaring potential contaminants. Precautionary allergen labeling such as "may contain traces of" is often used. However, this is unsatisfactory for consumers as they get no information if the contamination is below their personal threshold. In discussions with the food industry and technologists, it was suggested to use a voluntary declaration indicating that all declared contaminants are below a threshold of 0.5 mg protein per 100 g of food. This concentration is known to be below the threshold of most patients, and it can be technically guaranteed in most food production. However, it was also important to assess that in case of accidental ingestion of contaminants below this threshold by highly allergic patients, no fatal anaphylactic reaction could occur. Therefore, we performed a systematic review to assess whether a fatal reaction to 5mg of protein or less has been reported, assuming that a maximum portion size of 1kg of a processed food exceeds any meal and thus gives a sufficient safety margin. METHODS: MEDLINE and EMBASE were searched until 24 January 2021 for provocation studies and case reports in which one of the 14 major food allergens was reported to elicit fatal or life-threatening anaphylactic reactions and assessed if these occurred below the ingestion of 5mg of protein. A Delphi process was performed to obtain an expert consensus on the results. RESULTS: In the 210 studies included, in our search, no reports of fatal anaphylactic reactions reported below 5 mg protein ingested were identified. However, in provocation studies and case reports, severe reactions below 5 mg were reported for the following allergens: eggs, fish, lupin, milk, nuts, peanuts, soy, and sesame seeds. CONCLUSION: Based on the literature studied for this review, it can be stated that cross-contamination of the 14 major food allergens below 0.5 mg/100 g is likely not to endanger most food allergic patients when a standard portion of food is consumed. We propose to use the statement "this product contains the named allergens in the list of ingredients, it may contain traces of other contaminations (to be named, e.g. nut) at concentrations less than 0.5 mg per 100 g of this product" for a voluntary declaration on processed food packages. This level of avoidance of cross-contaminations can be achieved technically for most processed foods, and the statement would be a clear and helpful message to the consumers. However, it is clearly acknowledged that a voluntary declaration is only a first step to a legally binding solution. For this, further research on threshold levels is encouraged.


Subject(s)
Anaphylaxis , Food Hypersensitivity , Allergens/analysis , Anaphylaxis/diagnosis , Anaphylaxis/etiology , Anaphylaxis/prevention & control , Animals , Eggs , Food Hypersensitivity/diagnosis , Food Labeling , Humans
14.
Allergy ; 77(5): 1545-1558, 2022 05.
Article in English | MEDLINE | ID: mdl-34716996

ABSTRACT

BACKGROUND: The heterogeneity and lack of validation of existing severity scores for food allergic reactions limit standardization of case management and research advances. We aimed to develop and validate a severity score for food allergic reactions. METHODS: Following a multidisciplinary experts consensus, it was decided to develop a food allergy severity score (FASS) with ordinal (oFASS) and numerical (nFASS) formats. oFASS with 3 and 5 grades were generated through expert consensus, and nFASS by mathematical modeling. Evaluation was performed in the EuroPrevall outpatient clinic cohort (8232 food reactions) by logistic regression with request of emergency care and medications used as outcomes. Discrimination, classification, and calibration were calculated. Bootstrapping internal validation was followed by external validation (logistic regression) in 5 cohorts (3622 food reactions). Correlation of nFASS with the severity classification done by expert allergy clinicians by Best-Worst Scaling of 32 food reactions was calculated. RESULTS: oFASS and nFASS map consistently, with nFASS having greater granularity. With the outcomes emergency care, adrenaline and critical medical treatment, oFASS and nFASS had a good discrimination (receiver operating characteristic area under the curve [ROC-AUC]>0.80), classification (sensitivity 0.87-0.92, specificity 0.73-0.78), and calibration. Bootstrapping over ROC-AUC showed negligible biases (1.0 × 10-6 -1.23 × 10-3 ). In external validation, nFASS performed best with higher ROC-AUC. nFASS was strongly correlated (R 0.89) to best-worst scoring of 334 expert clinicians. CONCLUSION: FASS is a validated and reliable method to measure severity of food allergic reactions. The ordinal and numerical versions that map onto each other are suitable for use by different stakeholders in different settings.


Subject(s)
Food Hypersensitivity , Allergens , Area Under Curve , Food , Food Hypersensitivity/diagnosis , Humans , ROC Curve
15.
Clin Rev Allergy Immunol ; 62(1): 1-36, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33411319

ABSTRACT

Key determinants for the development of an allergic response to an otherwise 'harmless' food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens. We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.


Subject(s)
Allergens , Food Hypersensitivity , Allergens/chemistry , Animals , Epitopes , Food Handling , Humans , Proteins
16.
Clin Transl Allergy ; 11(3): e12010, 2021 May.
Article in English | MEDLINE | ID: mdl-34025983

ABSTRACT

BACKGROUND: Discovered and described 40 years ago, non-specific lipid transfer proteins (nsLTP) are present in many plant species and play an important role protecting plants from stressors such as heat or drought. In the last 20 years, sensitization to nsLTP and consequent reactions to plant foods has become an increasing concern. AIM: The aim of this paper is to review the evidence for the structure and function of nsLTP allergens, and cross-reactivity, sensitization, and epidemiology of nsLTP allergy. MATERIALS AND METHODS: A Task Force, supported by the European Academy of Allergy & Clinical Immunology (EAACI), reviewed current evidence and provide a signpost for future research. The search terms for this paper were "Non-specific Lipid Transfer Proteins", "LTP syndrome", "Pru p 3", "plant food allergy", "pollen-food syndrome". RESULTS: Most nsLTP allergens have a highly conserved structure stabilised by 4-disulphide bridges. Studies on the peach nsLTP, Pru p 3, demonstrate that nsLTPs are very cross-reactive, with the four major IgE epitopes of Pru p 3 being shared by nsLTP from other botanically related fruits. These nsLTP allergens are to varying degrees resistant to heat and digestion, and sensitization may occur through the oral, inhaled or cutaneous routes. In some populations, Pru p 3 is the primary and sole sensitizing allergen, but many are poly-sensitised both to botanically un-related nsLTP in foods, and non-food sources of nsLTP such as Cannabis sativa, Platanus acerifolia, (plane tree), Ambrosia artemisiifolia (ragweed) and Artemisia vulgaris (mugwort). Initially, nsLTP sensitization appeared to be limited to Mediterranean countries, however more recent studies suggest clinically relevant sensitization occurs in North Atlantic regions and also countries in Northern Europe, with nsLTP sensitisation profiles being broadly similar. DISCUSSION: These robust allergens have the potential to sensitize and provoke symptoms to a large number of plant foods, including those which are raw, cooked or processed. It is unknown why some sensitized individuals develop clinical symptoms to foods whereas others do not, or indeed what other allergens besides Pru p 3 may be primary sensitising allergens. It is clear that these allergens are also relevant in non-Mediterranean populations and there needs to be more recognition of this. CONCLUSION: Non-specific LTP allergens, present in a wide variety of plant foods and pollens, are structurally robust and so may be present in both raw and cooked foods. More studies are needed to understand routes of sensitization and the world-wide prevalence of clinical symptoms associated with sensitization to these complex allergens.

17.
Allergy ; 76(8): 2367-2382, 2021 08.
Article in English | MEDLINE | ID: mdl-33866585

ABSTRACT

Many allergens feature hydrophobic cavities that allow the binding of primarily hydrophobic small-molecule ligands. Ligand-binding specificities can be strict or promiscuous. Serum albumins from mammals and birds can assume multiple conformations that facilitate the binding of a broad spectrum of compounds. Pollen and plant food allergens of the family 10 of pathogenesis-related proteins bind a variety of small molecules such as glycosylated flavonoid derivatives, flavonoids, cytokinins, and steroids in vitro. However, their natural ligand binding was reported to be highly specific. Insect and mammalian lipocalins transport odorants, pheromones, catecholamines, and fatty acids with a similar level of specificity, while the food allergen ß-lactoglobulin from cow's milk is notably more promiscuous. Non-specific lipid transfer proteins from pollen and plant foods bind a wide variety of lipids, from phospholipids to fatty acids, as well as sterols and prostaglandin B2, aided by the high plasticity and flexibility displayed by their lipid-binding cavities. Ligands increase the stability of allergens to thermal and/or proteolytic degradation. They can also act as immunomodulatory agents that favor a Th2 polarization. In summary, ligand-binding allergens expose the immune system to a variety of biologically active compounds whose impact on the sensitization process has not been well studied thus far.


Subject(s)
Allergens , Food Hypersensitivity , Allergens/metabolism , Animals , Cattle , Female , Ligands , Pollen , Protein Binding
18.
Foods ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803451

ABSTRACT

Cow's milk (CM) is an integral part of our daily diet starting in infancy and continuing throughout our lifetime. Its composition is rich in proteins with a high nutritional value, bioactive components, milk minerals including calcium, and a range of immunoactive substances. However, cow's milk can also induce a range of immune-mediated diseases including non-IgE-mediated food allergies and IgE-mediated food allergies. Cow's milk allergens have been identified and characterized and the most relevant ones can be assigned to both, the whey and casein fraction. For preservation a range of processing methods are applied to make cow's milk and dairy products safe for consumers. However, these methods affect milk components and thus alter the overall immunogenic activity of cow's milk. This review summarizes the current knowledge on cow's milk allergens and immunoactive substances and the impact of the different processes up- or downregulating the immunogenicity of the respective proteins. It highlights the gaps of knowledge of the related disease mechanisms and the still unidentified beneficial immunomodulating compounds of cow's milk.

19.
World Allergy Organ J ; 14(3): 100530, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33767803

ABSTRACT

Food anaphylaxis is a severe, potentially life-threatening, systemic hypersensitivity reaction. Within a retrospective study we applied ImmunoCAP-ISAC in a heterogenous cohort of 54 food anaphylactic patients and compared its performance to conventional in vitro (ELISA, ImmunoCAP) and in vivo (skin prick test, oral food challenge) diagnosis. Comparing clinical diagnosis with results obtained by ImmunoCAP-ISAC we obtained moderate agreement (kappa 0.524, p < 0.05). The comparison between SPT and ImmunoCAP vs ImmunoCAP-ISAC indicates a good sensitivity of microarray testing. Among the 54 tested sera, 36 and 41 were in substantial agreement with results obtained by SPT (69%, kappa 0.667, p < 0.05) and ImmunoCAP-ISAC (76%, kappa 0.759, p < 0.05), respectively. Within this adult anaphylaxis cohort, plant food allergens were identified as the predominant IgE-binding proteins, with PR10 proteins, ω-5-gliadin and nsLTPs as the most frequent ones. In summary, microarray based IgE testing may help to unravel the elicitating food in anaphylaxis in particular when the elicitor is so far unknown.

20.
Allergy ; 76(8): 2433-2446, 2021 08.
Article in English | MEDLINE | ID: mdl-33655502

ABSTRACT

Sensitization to one or more non-specific lipid transfer proteins (nsLTPs), initially thought to exist mainly in southern Europe, is becoming accepted as a cause of allergic reactions to plant foods across Europe and beyond. The peach nsLTP allergen Pru p 3 is a dominant sensitizing allergen and peaches a common food trigger, although multiple foods can be involved. A frequent feature of reactions is the requirement for a cofactor (exercise, alcohol, non-steroidal anti-inflammatory drugs, Cannabis sativa) to be present for a food to elicit a reaction. The variability in the food and cofactor triggers makes it essential to include an allergy-focused diet and clinical history in the diagnostic workup. Testing on suspected food triggers should also establish whether sensitization to nsLTP is present, using purified or recombinant nsLTP allergens such as Pru p 3. The avoidance of known trigger foods and advice on cofactors is currently the main management for this condition. Studies on immunotherapy are promising, but it is unknown whether such treatments will be useful in populations where Pru p 3 is not the primary sensitizing allergen. Future research should focus on the mechanisms of cofactors, improving diagnostic accuracy and establishing the efficacy of immunotherapy.


Subject(s)
Antigens, Plant , Food Hypersensitivity , Allergens , Cross Reactions , Food Hypersensitivity/diagnosis , Food Hypersensitivity/therapy , Humans , Immunoglobulin E , Lipids , Plant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...